Tech support
Shopping Cart
Login
Register
Forgot Password?
Products
Diagnostics
Suppliers
About us
Contact
+31 (0)26 326 4450
Find the product you need
Description
Catalog number
CAS No.
Clone ID
News
Vorige
Volgende
anti-alpha-Tubulin (acetylated), mAb (TEU318)
Catalog number:
AG-20B-0068-C100
Brand:
AdipoGen Life Sciences
Packing:
100 ug
Price:
€ 340.00
Expected delivery time:
7 days
Quantity:
Spin Up
Spin Down
General
References
Product specifications for - anti-alpha-Tubulin (acetylated), mAb (TEU318)
Overview:
Product group:
Antibodies
Category:
Primary Antibodies
Application:
ImmunoCytoChemistry; Western Blot
Host:
Mouse
Clonality:
Monoclonal
Isotype:
IgG1
Properties:
Purity:
>95% (SDS-PAGE)
Datasheet:
Datasheet
Research Use Only
UNSPSC:
12352203
Concentration:
1 mg/ml
Form supplied:
Liquid. In PBS containing 10% glycerol and 0.02% sodium azide.
Storage instructions:
2-¦C to 8-¦C, -20-¦C
Scientific information:
Scientific info:
Microtubules are key elements of the eukaryotic cytoskeleton that dynamically assemble from heterodimers of alpha- and beta-tubulin. Two different mechanisms can generate microtubule diversity: the expression of different alpha- and beta-tubulin genes, referred to as tubulin isotypes, and the generation of posttranslational modifications (PTMs) on alpha- and beta-tubulin. Tubulin PTMs include the well-known acetylation or phosphorylation, and others that have so far mostly been found on tubulin, detyrosination/tyrosination, polyglutamylation and polyglycylation. These PTMs might have evolved to specifically regulate tubulin and microtubule functions. Tubulin acetylation was discovered on K40 of flagellar alpha-tubulin in Chlamydomonas reinhardtii and is generally enriched on stable microtubules in cells. It is located on the microtubule lumenal surface. As a result of its localization at the inner face of microtubules, K40 acetylation might rather affect the binding of microtubule inner proteins, a poorly characterized family of proteins. Functional experiments in cells have further suggested that K40 acetylation regulates intracellular transport by regulating the traffic of kinesin motors probably by indirect mechanisms. Acetyltransferase alpha-Tat1 (or Mec-17) specifically acetylate alpha-tubulin K40. Acetylation of tubulin by alpha-Tat1 accumulates selectively in stable, long-lived microtubules thus explaining the link between this posttranslational modication and stable microtubules in cells. However, the direct cellular function of K40 acetylation on microtubules is still unclear. - Monoclonal Antibody. Detects K40 acetylation of alpha-tubulin; signal specifically increased by modification with tubulin acetyl transferase alpha-TAT1. Isotype: Mouse IgG1. Clone: TEU318. Applications: ICC, WB. Liquid. In PBS containing 10% glycerol and 0.02% sodium azide. Microtubules are key elements of the eukaryotic cytoskeleton that dynamically assemble from heterodimers of alpha- and beta-tubulin. Two different mechanisms can generate microtubule diversity: the expression of different alpha- and beta-tubulin genes, referred to as tubulin isotypes, and the generation of posttranslational modifications (PTMs) on alpha- and beta-tubulin. Tubulin PTMs include the well-known acetylation or phosphorylation, and others that have so far mostly been found on tubulin, detyrosination/tyrosination, polyglutamylation and polyglycylation. These PTMs might have evolved to specifically regulate tubulin and microtubule functions. Tubulin acetylation was discovered on K40 of flagellar alpha-tubulin in Chlamydomonas reinhardtii and is generally enriched on stable microtubules in cells. It is located on the microtubule lumenal surface. As a result of its localization at the inner face of microtubules, K40 acetylation might rather affect the binding of microtubule inner proteins, a poorly characterized family of proteins. Functional experiments in cells have further suggested that K40 acetylation regulates intracellular transport by regulating the traffic of kinesin motors probably by indirect mechanisms. Acetyltransferase alpha-Tat1 (or Mec-17) specifically acetylate alpha-tubulin K40. Acetylation of tubulin by alpha-Tat1 accumulates selectively in stable, long-lived microtubules thus explaining the link between this posttranslational modication and stable microtubules in cells. However, the direct cellular function of K40 acetylation on microtubules is still unclear.
Clone ID:
TEU318
Safety information:
MSDS:
MSDS
Hazard information:
Non-hazardous
Additional information:
Synonyms:
AG-20B-0068-C100; AdipoGen Life Sciences
Isolation and characterization of libraries of monoclonal antibodies directed against various forms of tubulin in Paramecium: A.M. Callen, et al.; Biol. Cell 81, 95 (1994)
Read more
Where and when is microtubule diversity generated in Paramecium? Immunological properties of microtubular networks in the interphase and dividing cells: A. Fleury, et al.; Protoplasma 189, 37 (1995)
Read more
Structural inheritance in Paramecium: ultrastructural evidence for basal body and associated rootlets polarity transmission through binary fission: F. Iftode & A. Fleury-Aubusson; Biol. Cell 95, 39 (2003)
Read more
Investigating tubulin posttranslational modifications with specific antibodies: M.M. Magiera & C. Janke; In Methods Cell Biol. (Burlington: Academic Press) 115, 247 (2013)
Read more
See All