Bio-Connect

DAPK1 Antibody

CSB-PA006499ESR1HU
Cusabio
ApplicationsELISA
Product group Antibodies
ReactivityHuman
TargetDAPK1
Sign in to order and to see your custom pricing.
Large volume orders?
Order with a bulk request

Overview

  • Supplier
    Cusabio
  • Product Name
    DAPK1 Antibody
  • Delivery Days Customer
    20
  • Applications
    ELISA
  • Certification
    Research Use Only
  • Clonality
    Polyclonal
  • Conjugate
    Unconjugated
  • Gene ID1612
  • Target name
    DAPK1
  • Target description
    death associated protein kinase 1
  • Target synonyms
    DAP kinase 1; DAPK; death-associated protein kinase 1; ROCO3
  • Host
    Rabbit
  • Isotype
    IgG
  • Protein IDP53355
  • Protein Name
    Death-associated protein kinase 1
  • Scientific Description
    Calcium/calmodulin-dependent serine/threonine kinase involved in multiple cellular signaling pathways that trigger cell survival, apoptosis, and autophagy. Regulates both type I apoptotic and type II autophagic cell deaths signal, depending on the cellular setting. The former is caspase-dependent, while the latter is caspase-independent and is characterized by the accumulation of autophagic vesicles. Phosphorylates PIN1 resulting in inhibition of its catalytic activity, nuclear localization, and cellular function. Phosphorylates TPM1, enhancing stress fiber formation in endothelial cells. Phosphorylates STX1A and significantly decreases its binding to STXBP1. Phosphorylates PRKD1 and regulates JNK signaling by binding and activating PRKD1 under oxidative stress. Phosphorylates BECN1, reducing its interaction with BCL2 and BCL2L1 and promoting the induction of autophagy. Phosphorylates TSC2, disrupting the TSC1-TSC2 complex and stimulating mTORC1 activity in a growth factor-dependent pathway. Phosphorylates RPS6, MYL9 and DAPK3. Acts as a signaling amplifier of NMDA receptors at extrasynaptic sites for mediating brain damage in stroke. Cerebral ischemia recruits DAPK1 into the NMDA receptor complex and it phosphorylates GRINB at Ser-1303 inducing injurious Ca2+ influx through NMDA receptor channels, resulting in an irreversible neuronal death. Required together with DAPK3 for phosphorylation of RPL13A upon interferon-gamma activation which is causing RPL13A involvement in transcript-selective translation inhibition. Isoform 2 cannot induce apoptosis but can induce membrane blebbing.
  • Reactivity
    Human
  • Storage Instruction
    -20°C or -80°C
  • UNSPSC
    41116161