Bio-Connect
Immunohistochemical analysis of paraffin-embedded mouse pancreas, using Insulin Antibody.
Immunohistochemical analysis of paraffin-embedded mouse pancreas, using Insulin Antibody.
Immunohistochemical analysis of paraffin-embedded mouse pancreas, using Insulin Antibody.

Anti-Insulin Rabbit Monoclonal Antibody

M00067-1
Boster Bio
ApplicationsImmunoFluorescence, ImmunoCytoChemistry, ImmunoHistoChemistry
Product group Antibodies
TargetINS
100 ul
Sign in to order and to see your custom pricing.
Large volume orders?
Order with a bulk request

Overview

  • Supplier
    Boster Bio
  • Product Name
    Anti-Insulin Rabbit Monoclonal Antibody
  • Delivery Days Customer
    9
  • Applications
    ImmunoFluorescence, ImmunoCytoChemistry, ImmunoHistoChemistry
  • Certification
    Research Use Only
  • Clonality
    Monoclonal
  • Clone ID
    DEA-9
  • Gene ID3630
  • Target name
    INS
  • Target description
    insulin
  • Target synonyms
    IDDM, IDDM1, IDDM2, ILPR, IRDN, MODY10, PNDM4, insulin, preproinsulin, proinsulin
  • Host
    Rabbit
  • Isotype
    IgG
  • Protein IDP01308
  • Protein Name
    Insulin
  • Scientific Description
    Boster Bio Anti-Insulin Rabbit Monoclonal Antibody catalog # M00067-1. Tested in IHC, ICC/IF applications. This antibody reacts with Human, Mouse, Rat.
  • Storage Instruction
    -20°C
  • UNSPSC
    12352203

References

  • Xu L, Hu R, Jois SV, et al. Oleanolic acid and moderate drinking increase the pancreatic GLP-1R expression of the β-cell mass deficiency induced hyperglycemia. PeerJ. 2023,11:e15705. doi: 10.7717/peerj.15705
    Read this paper
  • Huang H, Shang Y, Li H, et al. Co-transplantation of Islets-Laden Microgels and Biodegradable O(2)-Generating Microspheres for Diabetes Treatment. ACS Appl Mater Interfaces. 2022,14(34):38448-38458. doi: 10.1021/acsami.2c07215
    Read this paper
  • Xu L, Jois S, Cui H. Metformin and Gegen Qinlian Decoction boost islet α-cell proliferation of the STZ induced diabetic rats. BMC Complement Med Ther. 2022,22(1):193. doi: 10.1186/s12906-022-03674-2
    Read this paper
  • Ge X, He X, Liu J, et al. Amelioration of type 2 diabetes by the novel 6, 8-guanidyl luteolin quinone-chromium coordination via biochemical mechanisms and gut microbiota interaction. J Adv Res. 2023,46:173-188. doi: 10.1016/j.jare.2022.06.003
    Read this paper
  • Zou M, Chi J, Jiang Z, et al. Functional thermosensitive hydrogels based on chitin as RIN-m5F cell carrier for the treatment of diabetes. Int J Biol Macromol. 2022,206:453-466. doi: 10.1016/j.ijbiomac.2022.02.175
    Read this paper
  • Su T, Hou J, Liu T, et al. MiR-34a-5p and miR-452-5p: The Novel Regulators of Pancreatic Endocrine Dysfunction in Diabetic Zucker Rats? Int J Med Sci. 2021,18(14):3171-3181. doi: 10.7150/ijms.62843
    Read this paper
  • Zhou D, Chen L, Mou X. Acarbose ameliorates spontaneous type‑2 diabetes in db/db mice by inhibiting PDX‑1 methylation. Mol Med Rep. 2021,23(1):pii: 72. doi: 10.3892/mmr.2020.11710.
    Read this paper
  • Dong X, Zhao SX, Yin XL, et al. Silk sericin has significantly hypoglycaemic effect in type 2 diabetic mice via anti-oxidation and anti-inflammation. Int J Biol Macromol. 2020,150:1061-1071. doi: 10.1016/j.ijbiomac.2019.10.111
    Read this paper
  • Gao T, Jiao Y, Liu Y, et al. Protective Effects of Konjac and Inulin Extracts on Type 1 and Type 2 Diabetes. J Diabetes Res. 2019,2019:3872182. doi: 10.1155/2019/3872182
    Read this paper
  • Wang L, Wang C, Zhang R, et al. Phenotypic characterization of a novel type 2 diabetes animal model in a SHANXI MU colony of Chinese hamsters. Endocrine. 2019,65(1):61-72. doi: 10.1007/s12020-019-01940-x
    Read this paper