Goat anti-GAPDH (C Terminus) Loading Control
EB06377
ApplicationsImmunoFluorescence, Western Blot, ELISA, ImmunoHistoChemistry
Product group Antibodies
TargetGAPDH
Overview
- SupplierEverest Biotech
- Product NameGoat anti-GAPDH (C Terminus) Loading Control Antibody
- Delivery Days Customer5
- Application Supplier NoteImmunofluorescence: Strong expression of the protein seen in the cytoplasm and vesicles of A549 and HeLa cells. Recommended concentration: 10microg/ml.
- ApplicationsImmunoFluorescence, Western Blot, ELISA, ImmunoHistoChemistry
- Applications SupplierPep-ELISA, WB, IF, IHC
- CertificationResearch Use Only
- ClonalityPolyclonal
- Concentration0.5 mg/ml
- Gene ID2597
- Target nameGAPDH
- Target descriptionglyceraldehyde-3-phosphate dehydrogenase
- Target synonymsG3PD, GAPD, HEL-S-162eP, glyceraldehyde-3-phosphate dehydrogenase, OCAS, p38 component, Oct1 coactivator in S phase, 38 Kd component, aging-associated gene 9 protein, epididymis secretory sperm binding protein Li 162eP, peptidyl-cysteine S-nitrosylase GAPDH
- HostGoat
- IsotypeIsotype Control
- Scientific DescriptionRefSeq number(s): NP_002037.2. Purification: Antigen affinity purified. Names and symbols: GAPDH; glyceraldehyde-3-phosphate dehydrogenase; HGNC:4141; G3PD; GAPD; MGC88685; OTTHUMP00000174431; OTTHUMP00000174432; aging-associated gene 9 protein; glyceraldehyde 3-phosphate dehydrogenase
- Reactivity SupplierHuman, Mouse, Dog, Pig
- Storage Instruction-20°C
- UNSPSC12352203
References
- George J, Jacobs HT. Germline knockdown of spargel (PGC-1) produces embryonic lethality in Drosophila. Mitochondrion. 2019,49:189-199. doi: 10.1016/j.mito.2019.08.006Read this paper
- George J, Jacobs HT. Minimal effects of spargel (PGC-1) overexpression in a Drosophila mitochondrial disease model. Biol Open. 2019,8(7). doi: 10.1242/bio.042135Read this paper
- Sikorski K, Mehta A, Inngjerdingen M, et al. A high-throughput pipeline for validation of antibodies. Nat Methods. 2018,15(11):909-912. doi: 10.1038/s41592-018-0179-8Read this paper
- Osei Kuffour E, Schott K, Jaguva Vasudevan AA, et al. USP18 (UBP43) Abrogates p21-Mediated Inhibition of HIV-1. J Virol. 2018,92(20). doi: 10.1128/JVI.00592-18Read this paper
- Jaguva Vasudevan AA, Bähr A, Grothmann R, et al. MXB inhibits murine cytomegalovirus. Virology. 2018,522:158-167. doi: 10.1016/j.virol.2018.07.017Read this paper
- Hain A, Krämer M, Linka RM, et al. IL-2 Inducible Kinase ITK is Critical for HIV-1 Infection of Jurkat T-cells. Sci Rep. 2018,8(1):3217. doi: 10.1038/s41598-018-21344-7Read this paper
- Scialo F, Sriram A, Stefanatos R, et al. Practical Recommendations for the Use of the GeneSwitch Gal4 System to Knock-Down Genes in Drosophila melanogaster. PLoS One. 2016,11(8):e0161817. doi: 10.1371/journal.pone.0161817Read this paper
- Happold C, Roth P, Silginer M, et al. Interferon-β induces loss of spherogenicity and overcomes therapy resistance of glioblastoma stem cells. Mol Cancer Ther. 2014,13(4):948-61. doi: 10.1158/1535-7163.MCT-13-0772Read this paper
- Happold C, Roth P, Wick W, et al. Distinct molecular mechanisms of acquired resistance to temozolomide in glioblastoma cells. J Neurochem. 2012,122(2):444-55. doi: 10.1111/j.1471-4159.2012.07781.xRead this paper
- Kiepe D, Van Der Pas A, Ciarmatori S, et al. Defined carboxy-terminal fragments of insulin-like growth factor (IGF) binding protein-2 exert similar mitogenic activity on cultured rat growth plate chondrocytes as IGF-I. Endocrinology. 2008,149(10):4901-11. doi: 10.1210/en.2007-1395Read this paper




